Security Analysis of Logic Obfuscation

Jeyvavijayan Rajendrant. Youngok Pinof. Ozgur Sinanoglug, and Ramesh Karrit
7Polviechnic Tnstitule of New York University Air Force Research Tabs §New York University-Abu Dhabi

ABSTRACT

Due to globalization of utegrated Circuit (1C) design flow,
rogue elements in the supply chain can pirate ICs, overbuild
ICs. and insert hardware trojans. EPIC [1] obfuscates the
design by randomly inserting additional gates; only a cor-
rect key makes the design to produce correct outputs. We
demonstrate that an attacker can decipher the obfuscated
netlist, in a time lincar to the munber of keys, by sensitizing
the key values to the output. We then develop technigues to
fix this vulnerability and make obfuscation truly exponcntial
in the number of inscrted keys.

Categories and Subject Descriptors

K.G6.5 [Management of Computing and Information
Systems]: [Sccurity and P'rotection-Physical Sceurity]

General Terms

Sccurity

Keywords

TP protection, Logic obfuscation

1. INTRODUCTION

1.1 Motivation — Preventing IP Piracy

Glehalization of Integrated Circuit (IC) design is male
ing IC/Intellectual Property (IP) designers and users re-
evaluate their trust in hardware [2]. As the IC design Aow
is distributed worldwide, hardware is prone to new kinds of
attacks such as reversc engincering and IP piracy [1]. An
attacker, anywhere in this design flow, can reverse engincer
the functionality of an IC/IP. One can then steal and claim
ownership of the IP. An untrusted IC foundry may over-
build ICs and scll them illegally. Finally, rogue clements
in Lhe foundry may inserl malicious circuits (hardware tro-
jang) into the design without the designer’s knowledge [3].
Because ol these atlacks, the semiconductor industey loses
$4 billion annually [4].

Il a designer can hide the Tunclionality of an IC while
it passes throngh the different, potentially untrustworthy
phases of the design flow, these attacks can be thwarted [1].

1.2 Logic obfuscation

Logic obfuscation hides the functionality and the imple-
menlation of a design by inserling additional gates into the
original design. In order for the design to exhibit its correct
Munctionality (i.e., produces correcl outpuls), a valid key has
to be supplied to the obfuscated design. The gates inserted
for obfuscation are the key-gates. Upon applying a wrong
key, the obfuscated design will exhibit a wrong functionality
(i.e., produce wrong outputs).

Consider the circuit shown in Figure 1 which is obfus-
cated using kev-gatos K and K2 The inputs I — [6 are
the functional inputs and K{ and K2 are the key inputs
connected to the key-gates. On applying the correct key

Permission 1o make digital or hard copics ol all or parl ol this work lor
personal or elassroom use 1s granted withoul [ee provided that copics arc
not made or distributed for prefit or commereial advantage and thal copics
bear this notice and the full citation on the first page. 'To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee,

DAC 2042, June 3-7, 2012, San Francisco, California, USA.

Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

83

values (K1=0 and K2=1) the design will produce a correct
output; otherwise, it will produce a wrong output.

Figure 1: A circuil obluscaled using two key-gales K1 and K2
baged on the technique proposed in [1]. By applying the inputs
pattern 100000, an attacker can sensitize key bits K1 and K2 to
the outputs O1 and 02, and obscrve their values.

EPIC [1] incorporates logic obfuscation into the [C design
Mlow, as shown in Tigure 2. In the untrusted design phases,
the 1C is obfuscated and its functionality is not revealed.
Post-tabrication, the IP vendor activates the obfuscated de-
sign by applying the valid key. The keys are stored in a
tamper-evident memory inside the design to prevent access
to an attacker, rendering thes key inputs unaceessible by an
attacker.

1.3 Attacks against logic obfuscation

The purposc of logic obfuscation is defeated if an attacker
can determine the sceret kevs used for obfuscation. By de-
termining the keys, one can decipher the functional nctlist,
and make piraled copies and sell them illegally.

We propesc an attack where the attacker applics specific
inpul patlerns, observes Lhe oulpuls [or these pallern, and
deciphers the secret key. o perform this attack, one needs
the obluscaled netlist and a functional [C. An allacker can
obtain the obfuscated netlist from (1) the IC design, or by
reverse engineering the (2) layout, (3) mask, ot (1) a manu-
factured IC as shown in Figure 2. The functional IC, (5) in
Figure 2, is bought in the open market.

The value of an unknown key can be determined if it can
be sensitized' to an ontput without being masked /eorrupted
by the other key-bits and inputs. By observing the output,
the scnsitized key bit can be determined, given that other
koy-bits {similar to unknown X-scurces®) do not interfere
with the sensitized path.

Once an attacker determines an input pattern that prop-
agates the key-hit value to an output witheut any interfer-
cnce, it is applicd to the functional IC i.¢., the IC with the
correct keys. Now, this pallern will propagale Lhe correct
key value to an output. An attacker can obscrve this output
and resolve Lhe value of Lthal key-bil.

Motivational example 1 {(attack): Consider the key
input K1 in I"igure 1. It will be sensitized to output Ol if
the value at the other input of gate G6 is 0 (non-controlling
value for an O gate). This can be achieved by setting 11=1,
12=0 and I3=0. As the attacker has aceess to the functional
IC, one can apply this pattern and determine the value of
K1 on Q1. For example, if the value of O1 is 0 for that input
pattern, then K1 = 0, otherwise K1=1.

'Sensitization of an internal line { to an output O refers
to the condition {values applied from the primary inputs to
Justify the side input of gates on the path from ! to O to the
non-controllable valucs of the gates) which bijectively maps
I to O and thus renders any change on ! ohacrvable on O.
2X-sources: Uninitialized memory units, bus contentions or
multi-cycle paths arc the source of nnknown responsc hits,
i.c., unknown-Xs in testing. They arce non-controllable.

Untrusted design regime

Trusted design regime IC Layout

i design generation
Original Obfuscated
netlist netlist
(@)

IP owner]

N
Reverse
engineering

Fabrication

Trusted desigri Market
Packaging | regime

1P
//’ gowneri /@

netlist

Figure 2: The top blue box represents the EPIC design flow [1]. The design is in the obfuscated form in the untrusted design regime.
In the untrusted regime, an attacker can obtain the obfuscated netlist from (1) the IC design, or by reverse engineering the (2) layout,
(3) mask, or (4) a fabricated IC, and (5) the functional IC from the market. Using this attack, the attacker can get a deciphered netlist

and make pirated copies.

This problem is analogous to the fault sensitization prob-
lem in the presence of unknown-X values that can possible
block/mask the fault propagation [5]. The key-bits K1 and
K2 are equivalent to X-sources X; and Xz in Figure 1.
Similarities and differences between fault detection
and key-propagation: Both objectives require an input
pattern that sensitizes the fault effect/key bit by
e blocking the effect of some or all of the X-sources/other

key bits, and preventing their interference.

o justifying the side input of all the gates on the sensitiza-
tion path to non-controlling values of the gates

The two problems differ slightly:

o fault detection also involves fault activation by justifying
the fault site to the fault value; key propagation requires
only sensitization

o fault detection aims at blocking/avoiding unknown X’s;
key propagation aims identifying unknowns one at a time
resulting in an iterative and dynamic process

While an Automatic Test Pattern Generation tool [5] ca-
pable of handling X’s during test generation can be readily
used by the attacker to identify the patterns that decipher
key bits, we take a closer look at various interference scenar-
ios for the key bits (unknown sources) with the ultimate goal
of building a strong defense, i.e., a smart logic obfuscation
technique.

1.4 Smart logic obfuscation

To prevent such attacks, key-sensitization has to be ham-
pered by inserting key-gates in such a way that propagation
of a key value will be possible only if certain conditions are
forced on other key inputs. As thesc key inputs arc not
accessible by the attacker, one cannot force the values nec-
essary to propagate the effect of a key. Thus, brute force
has to be employed.

1

Cannot be
propagated
4XO_wio controlling

Figure 3: The attacker cannot propagate the effect of key bits
K1 and K2 individually to the outputs. Hence, the attacker has
to brute force to determine the values of K1 and K2.

Motivational example 2 (defense): Consider the
circuit shown in Figure 3 which is the same functional circuit
shown in Figure 1 but the two key-gates K1 and K2 are at
different locations. Here, if the attacker has to propagate
the effect of either of the keys, then one has to force a ‘0
(non-controlling value of NOR gates) on the other input of
G4. In order to force this value, one has to control the key
inputs, which are inaccessible. Thus one cannot propagate
the effect of a key to an output, failing to determine the
values of the key.

Depending upon the location of key-gates, different tech-
niques have to employed to propagate the effect of a key. In

84

Section 2, we describe the different types of key-gates based
on their locations and also the strategies that an attacker
may follow to decipher the key bits. In section 3, we intro-
duce a graph notation to capture the interference between
key bits, enabling algorithmic development for smarter logic
obfuscation. Section 4 compares the obfuscation strength
and performance results between the random insertion and
the proposed logic obfuscation technique.

1.5 Contributions

The contributions of this paper are

e an attack on logic obfuscation based on IC testing con-
cepts

e strategies used by an attacker to decipher keys based on
their interference

e a logic obfuscation algorithm based on key-gates interfer-
ence graph

2. ATTACK STRATEGIES

A logic obfuscation technique can insert the key-gates any-
where in the circuit. Depending upon their location, the at-
tacker develops different strategies to determine the key bits.
In this section, we will classify key-gates based on their type
of interference with other key-gates and the corresponding
strategy used by the attacker.

2.1 Runs of key-gates

A set of key-gates connected in a back-to-back fashion
forms a run of key-gates.
Example 3: In Figure 4(a), the key-gates K1 and K2 form
a run as they are connected back-to-back.

Figure 4: (a) A run of two key-gates K1 and K2. (b) K3 replaces
K1 and K2.

Runs of key-gates reduce the effort of an attacker as they

increase the valid key space. If N key-gates form a run, then
the valid key space increases from the ideal, 1 valid key, to
281 valid keys. In the above example, 01 and 10 are valid
keys, one of which suffices for the attacker.
Attack strategy: An attacker can replace a run of key-
gates by a single key-gate, thereby reducing the number of
key bits. Once the value of that key-gate is determined, one
can find the entire valid key space. For example, in Figure
4(b), the attacker replaces K1 and K2 with a key-gate K3.
After the value of K3 is resolved as 1, one determines that
the valid key space is 01 and 10.

2.2 Isolated key-gates

If there is no path from a key-gate to all the other key-
gates and vice-versa, then such a gate is called an isolated
key-gate.

Example 4: Consider the gate K1 in Figure 1. As there
is no path between K1 and K2, K1 and K2 are isolated gates.
Attack strategy: An attacker prefers isolated key-gates as
there is no interference with other key-gates. An attacker

identifics a pattern that uniquely propagates the effeet of an
isolated key-gate’s key to an output. Onc then applics the
pattern to the functional IC and determincs its valuc.

As mentioned before, in Figure 1, the pattorn 100X XX
propagates Lhe value of K1 1o outpul O1. An attacker, upon
observing this output. can identify that the value of K1 is 0.

2.3 Dominating key-gates

Il there are Lwo key-gales K1 and K2 guch that K2 lies on
every path between K1 and the outputs, then K2 is called a
dominating key-gate.
Example 5: The gate K2 in Figure 5 is a dominating key-
gate,

Qz

Figure 5: K2 is a dominating key-gate whose key bit value can
Ire delermined only aller muling the eflect of K1. Pallerns that

make cither C = 0 and A=1 or C=0 and B =1 will mutc the cffect
of K1. However, only if A = 1, the effect of K2 ¢can reach O1.

Attack strategy: An allacker can delermine the value
of K2's key bit only if the effect of K1's key bit is prevented
(muted) from reaching key-pgate K2 while simultaneously
sengitizing K2's key bit to an output. An input pattern
that can performn muting as well as sensitization is called
the golden pattern. On applying this golden pattern. the
attacker can determine the value of K2, If muting of K1
and propagation of K2 cannot be performed simultancously,
then the attacker cannot determine value of K2, In such
cases, the golden pattern does not cxist, forcing an attacker
to cmploy brute foree.

The cffect of a key can be mnted before it reaches the
other key, by using patterns that force controlling values in
any of the gates on the path between K1 and K2, If there
are multiple paths [rom key-gales K1 and K2, then Lhe ellect
of key-input K1 hasg to be muted on every path.

Example 6: Consider the circuil shown in Tigure 5. K2
can be determined only if the effect of K1 is muted. 1f there
i3 a pallern Lhai jusiifies the oulputl of G5 1o 1, Lhen the
effect of K1 will be muted. Patterns that make either C
=0, or A=1 and B =1 will assure this condition, thereby
muting the effect of K1. Ilowever, the attacker should select
the pattern that propagates the effect of K2 to an output.
If C =0, G7 blocks the propagation of K2 as its output will
always be (0. The condition A = 1, allows K2 to propagate
through G6. Hence, an attacker will select the pattern that
makes A=1 and C =0, so that onc can mute the cffect of K1
as well as propagate the offect of K2 to an output.

2.4 Convergent key-gates

Even il there are no palhs belween Lwo key-gales., Lhe
scnsitization paths might interfere. Such scenarios happen
il these two or more key-gales converge. Depending upon
the type of convergence, key-gates can be classified into 1)
concurrenily mutable, 2} sequentially mucable, and 3) non-
mutable key-gates.

2.4.1 Concurrently mutable convergent key-gates

If two key-gates K1 and K2 converge at some other gate,
such that K1's key bit can be determined by muting K2, and
K2’s kev bit can be determined by muting K1, then K1 and
K2 are called concurrently mutable kev-gates.

o ; K1
j@Oj 1 B :@OI) 2 i 2
B o1 o)]
PP B
ta) (h)
Figure 6: (a) Concurrently mutable key-gates: K1 and K2 con-

verge abt G5 and can be muted. (b} Scquentially mutable key-
gates: K1 and K2 converge at G4, but only K1 can be muted.

85

Example 7: Consider the circuir shown in Figure 6(a).
The key-gates K1 and K2 converge at the gate G5, The
value of K1 can be determined by applying a patiern that
mutes K2 (B=0). Similarly, the value of K2 can be deter-
mined by applying a pattern thal mutes K1 (A=T1}.
Attack strategy: The attacker determines the golden pat-
tern that mutes one key and simultaneously sensitizes the
other key to an output, or vice-versa, If a golden pattern
does not exist, then the attacker has to perform brute force
only on that set of concurrently mutable key-gates,

2.4.2 Sequentially mutable convergent key-gates

If two gates K1 and K2 converge at some other gate, such
that K2’s key bit can be determined by muting K1's key
while K2's key cannot be muted to determine K1's key, then
K1 and K2 are called scquentially mutable convergent koy-
gates, as they can be deciphered only in a particnlar order.

Example 8: Consider the circuit shown in Figure 6(h).
The value of K2 can be determined by applying a pattern
that mutes K1 (A=1), while K2 cannot bc muted as it di-
rectly leeds Lhe gale where K1 and K2 converge.
Attack strategy: An allacker will fiest delermine K2's
value by muting K1 using the golden pattern. One then
updates the nellisl by replacing K1 wilh a buller or an in-
verter based on the value of K2, Then Kl is targeted. If
the polden pattern does not exist, then the attacker has to
perform brute force only on that set of sequentially mutable
key-gates.

2.4.3 Non-mutuble convergent key-gates

If two key-gates K1 and K2 converge at some other gate,
such that neither of the key bits can be muted, then K1 and
K2 arc called non-mutable convergent key-gatos.
Example 9: Consider the circuit shown in Figure 3. The
key-gates K1 and K2 are connceted to the same gate G4,
Attack strategy: To propagale either of Lhe key bits ihe
other one has to be muted. However, as an attacker cannot
access key inputs, one cannol force those values. Hence, one
is forced to perform brute force attacks.

Input : Obfuscated netlist, Functional IC, Key Inputs
Qutput: Original netlist
Determine Runs of Keys;
Replace them with XOR gates;
Update Netlist;
for the remaining keys do
For each [solated Key do
Compute and apply propagation pattern;
Determine KeyRits and update Netlist;
end
For each Conseccutive|| Concurrent|| Sequential key do
if there exists a golden patiern then
‘ Apply the golden pattern;

Determine Keylits, Update Netlist, Break:
else
| ApplyBruleForce(), Break;
end
end
For each Nown-mulable Key do
| ApplyBruleForco(), Break;
end
end

ApplyBruteForce();
For each possible key combination do
Geunerate vandom input patteris;
Simnulate the patterns and obtain the ocutputs QP
Apply the palterns on IC and oblain the oulpuls GFPeye;
if OF.;n==0F.;. then
Valid Key = current key combination;
Update netlist;
end
end

Algorithm 1: Attack on logic obfuscation.

2.5 An attacker’s action plan

By considering all the different tvpes of interference be-
tween keyv-gates, an attacker uses Algorithm 1 to deterinine

the sceret key. The attacker first removes the runs of key-
gates and targets the isolated key-gates. Each isolated gate
can be removed by one test patterns. After that, one targets
conscoutively mutable, concurrently mutable, and sequen-
tially mutable key-gates. Only il one ig able 1o generale
a golden pattern that simultancously mutes coffects of the
other keys and sensitives the ellect of the targel key, Lhe
value of the target key can be determined. Finally, the non-
mutable keys are identilied via brule force. As the key bils
are identified gradually in every iteration. the corresponding
key-gates can be replaced by a buffer or an inverter, possi-
bly changing the type of other key-gates. Thus, in every
iteration, the key-gate types need to be re-computed.

3. STRONG LOGIC OBFUSCATION

Strong logic obfnscation hinges on inserting key-gates with
complex interferences among them. Next, we rclate types of
key-gates to the kind of interforcnee they introduce wsing a
graph-bascd notation.

3.1 Interference graph

(b) {c) ()

Figure T: {a) An example circuit with three kev-gates. (b) Inter-
ference graph of the kev-gates. Non-mutable kevs are connocted
by solid edges. (c) If the new key-gate is inserted at the out-
put G10, it creates mutable edges (dotted lines} with the other
key-gates (d) If the new koy-gate is insarted at the output G5, it
creates non-mutable edges [solid lines) with the other kev-gates.

To insert key-gates, we form an interference graph of key-
gates, In this praph, cach node represents a key-gate and
an cdge connects two nodes, it two gates interfere. Isolated
key-gates arc representod with isolated nodes. A run of key-
gatcs is denoted by asingle node. Non-mutable key-gates arc
represented are connceted with non-mutable cdges, coneur-
rently mutable kev-gates arc connected with mutable cdges.
Sequentially mutable key gales are connecled by (wo edges;
a non-mulable edge ariges [rom the key-gale thal is non-
mutable and a mutable edges arises from the key-gate that
is mutable.

Example 10: Consider the circuit with three key-gates
shown in 7(a). They interfere with each other as follows

o K1 and K2 are non-mutable and so they are connected by
non-mutable edges as shown in Figure 7(h).

o The key-gates K1 and K3 converge at the gate G6, hence
they are converging key-gates, Specifically, they are se-
quentially convergent; K3’s effect cannot be muted while
K1's effect can be muted by applying I5=0. Howcever if
15 is 0, then both key bits arc blocked at G8. Hence, K1
and K3 arc non-mutable and so they are connected by
non-mutable cdges as shown in Figure 7(b}.

e K2 and K3 converge at the gate GB, through G35 and
(37, respectively. However, neither of the key bits ean be
muted and sensitized individually, For instance, making
I16=1, mutes K2 but algo blocks the sensitization of K3 at
G10. Making I7=1, mutes K3 but. also blocks the sensili-
zation of K2 at G10. Henee, K2 and K3 arc non-mutable
as shown in Figure 7(h).

86

For a stronger logic obfuscation, the munber of non-mutable
odges in the intorfercnce graph should be maximized, as
they force an attacker to perform brute force. On the other
hand, if there are more mutable cdges, then the attacker
cah mule the eliecl ol keys and can easily delermine Lheir
values. Henee, a defender prefers non-mutable cdges to nu-
Lable edges.

Example 11: Consider the cireuit shown in Fig 7{a). If
a new kev-gale, K4, is inserled al the outpul of G10, then
it creates mutable edges with all the other key-gates. By
setting 16=1 or 17=1. the attacker can mute the effects of
K1, K2, and K3, and can decipher easily. ITence, G10 is
connected with mutable edges with the other key-gates as
shown in Figure 7{c).

If the new kev-pate, K4, 18 inserted at the output of G5,
then it creates non-mutable edges with the other kev-gates
as shown in Figure 7{d). Thus, it is better to insert the new
key-gates at the ontput of (G5,

Input : Original netlist, KeySize

Output: Obluscated netlist

KeyGatelocations = { }:

Randomly inscrt 10%: key-gates;

Add that location to Key(GateLocations;

Construcl KeyGraph;

for i « 2 to KeySize do
For each Gale; in Nellisi do

if Gute; ¢ KeyGuteLocations then
Cum. Weight = 3~ weight of edges in KevGrapl
For cach Key-gale, in KeyGaleLorations do
Cum. Weight; += FindMotrie(Gatej,
Key-gatey)
end
end
end
Scleet the Gare with the highest Harduess Metric;
Add the selected gate to KevQateLocations;
Insert a key-gale at Lhe oulput of Lhe seleclted gale;
Update KoyGraph;
end

FindMetric (K1, K2):

if K1 and K are isolated then Return 0;

if K1 and K2 are consecutive||concurrent||sequential then
if a golden pattern exists then

Return weight of mutable edge;

else Return weight of non-mutable edge:

cnd

if K1 and K2 ar¢ non-imutable then

Return weight of non-mutable edge;

Algorithm 2: Insertion of key-gates

3.2 Insertion of key-gates

A defender can use the interference graph to insert key-
gates. Algorithim 2 is used to insert kev-gates. At every
iteration, a key-gate is inserted at a location such that the
nuwmber of non-mutable edges in the graph is maximized.

Initially, 10% of the total key-gates arc inscrted at ran-
dom locations in the circuit. Such random distribution will
inscrt key-gates in different parts of the cireuit therchy af-
fecting multiple outputs. Here, we considered 10% for initial
distribution (onc also can chose a different amount of initial
distribution and thc impact of this amount on obfuscation
is beyond the scope of this paper). Then the graph of key-
gates is constructed. Then, the remaining key-gates arc in-
troduced iteratively, In overy itcration, for cach gate in the
nellisl, we determine the Lype of edge with the previously in-
serted key-gate. Depending upon the type of edge, we assign
weighls; non-mulable edges are given a higher weighl than
the mutable edges. We then calculate the sum of weights of
edges in Lhe graph lor Lthal gale. The gale Lhal maximives
the suin of weight of edges in the graph is selected, and a
key-gate is inserted at its output. The graph is then updated
by including the new kev-gate. This procedure is repeated
for inserting all the key-gates,

In every iteration, the defender has to check for the pres-
ence of golden patterns which might increase the computa-

of keys

180

160

140

120

100

80

60

40

20

tional complexity of the algorithm. Henee, a defender can
assume that thore always exists a golden pattern and skip
the scarch for the gelden pattern. This is a pessimistic sce-
nario for a defender becanse some golden patterns might not
exigl.

4. RESULTS
4.1 Experimental Setup

The proposed technique is analyzed using ISCAS-85 com-
binational benchmarks. We used the Atalanta testing tool
[6] to determine the input patterns for muting and prop-
agation the effects of kevs. To obfuscate a circuit with a
reasonable performance overhead, we sclected the key size
as 5% of number of gates in that circuit. While obfuscat-
ing a circuit, we assumed that there always cxists a golden
pattern. While attacking the circuit, we used the techniques
proposed in Section 2 where we scarch for the prescnce of a
golden pattern. For every brute force attempt, we applicd
1000 random pallerns Lo determine Uhe value of a key. The
area. power. and delay overheads were oblained usging the
Cadence RT'L compiler.

We compared the ellectiveness of four lypes ol insertions:
random-insertion [1], random insertion with no rung of gates,
unweighted insertion where both mutable and non-mutable
edges are given the same weight of 1, and weighted insertion
where non-mutable edges are given a higher weight {weight
= 2) than the mutable edges {(weight = 1}.

] 75 146
2 Runs mssssn 20 S}

Isolated —
M Dominant s
i Con. Mutable
i iSeq. Mutable
i {Non-Mutable me—

o~y

Unweighted Weighted

Figure 8: Types of key-gates inserted by different logic
obfuscation techniques. Effective key size from an at-
tacker’s perspective (top) and from a defender’s perspec-
tive {(bottom) are shown as numbers on top the bars.

4.2 Types of keys and effective key-size

Figure 8 shows Lhe number of types ol keys in dillerent
benchmarks for different types of insertions. In the random
insertion method, most of Lhe keys are concurrently mula-
ble. Some number of keys are ingerted in runs benefiting
the attacker. Only 30% ol keys are non-mulable and se-
guentially mutable which require brute force approach. In
the ‘Tandom + No Runs’ method, keys are not inserted in
runs thereby increasing the effort of the attacker.

In the unweighted and weighted insertions, around 90%
of keys are of non-tnutable and sequentially mutable types.
Most of the keys in weighted insertion is cither non-mutable
or sequentially mmtable becanse they are given a higher
woight., There are no isolated keys in cither of the inser-
tion techniques, as they are not given any weights.

Effective key size: Duc to random inscrtion of the first
109 of key-gates, mnltiple disconnceted graphs might ox-
isl. within a key-inlerference graph. The keys in a graph
can bc cither isolated, dominant, or convergent. Since a de-

87

fender pessimistically assumes that the golden patterns al-
ways oxist, the cffective key size from his perspective is the
maximum numbcr of non-mutable keys in a connccted key-
interference graph. If there are N non-mutable key gates
(ellective key-size), the number of brule force allempls is
2% Howcver, when an attacker trics to attack, not all
the golden palierns will exisl. TFor those keys, he has Lo
try for all possible combinations. Heice, from an attacker’s
perspeclive, Lhe elfeclive key sive is Lhe largest key sive on
which brute force is atterupted. If the munber of brute force
attempts is 2™, then the effective key size for an attacker is
M.

In Figure 8, the effective kev-sizes for a defender and an
attacker are shown as numbers on top of the bars. For both
the attacker and defender, the effective key sizes of random
insertions are less than that of the unweighted and weighted
inscrtions. Therefore, the number of brute force attempts
required to decipher the keys inscrted using random inser-
tiong is exponentially smaller than that of the unweighted
and weighted insertions. The attacker’s cficctive key size is
always greater than that of the defender’s bocause of the ab-
senee of golden patterns which forees the attacker to perform
brute lorce. Tor example, consider the benchmark C7352,
the attacker needs 2% brute force attempts and hence the
ellective key sive is 146. On Lhe olther hand, Tor a delender,
the largesl number ol non-mutable key-gates in a connecled
graph is 51 and hence the effective key size is 51.

4.3 Number of test patterns

10%

N4 10%
1040 L i
Random {Defender’s
10% | Random {Aftacker's) Ex=z=a {109 &
& Weighted {Defender’s =
2w} Weighted (Attacker's) === B “E’
@ e
s T b
o
‘% 102 £ ¥ —= 1000 years
= N 11400
:‘::’ 10% F s N — 41é}days
N N
ok S i
N N 3 g
1A 1
N 1 v ' micro
1g° zEh M§§ n§§ N N b&ﬁ g ¥ second

432 0499 0880 C1355 C1908 C2670 03540 05315 07552
Figure 9 Number of test patterns required by the at-
tacker to determine the keys inscrted using random and
weighted insertion from an attacker and a defender’s per-
spectives. The time scales are drawn assuming that one
billion input patterns can be applied per second.

Figure 9 shows the mumber of test patterns required to
decipher the key from a defender and an attacker’s perspece-
tives for the random and weighted insertion method. The
time acales are calculated assuming that an attacker can
apply a billion patterns per sccond. On one hand, from a
defender’s perspective, the number of test patterns are cal-
culated assuming that golden patterns cxist. On other hand,
from an attaclier’s perspective, the number of test patterns
are more realistic as they are delermined uging the allack
mcthodology proposed in Scetion 2. It can be seen that the
delender’s perspective on limescale is several orders of mag-
nitude smaller than the realistic seenario. For example, in
C7552 circuil, a delender thinks Lhat it will Lake 46 days Lo
decipher the netlist while the attacker will talke mmore than
a thousand vears. However, from both attacker’s and de-
fender’s perspectives, a few thousand test patterns are suffi-
cient to figure out the keys when they are inserted randomly.
On the other hand, when the weighted key insertion method
is used, the number of test patterns required to recover the
keys increases by several orders of magnitude. For example,
in casc of C7552 to about 10" which will take several years
to figure out the key bits.

4.4 [Effect of the weight of a non-mutable edge

Table 1: No. of non-mutable keys out of the total 176 keys in
the benclunark C7552 [or dillerent weighls of non-mutable edges.

[Weight, of non-mmutable edge [1 | 2 [10 [100 [1000 |
| 138 1 149 [156 | 163 |

| # of non-mutable key-gates | 115

By increasing the weight of the non-mutable edges, the
algorithm will create a design that has a large number of
non-mutable key-gates. Table 1 shows the number of non-
mntable key-gates for difficrent weights of non-mntable cdges
in one of the ISCAS-85 benchmark eircuit, €7552. This
cirenit was obfuscated with 176 key-gates. While increasing
the weighl of the non-mutable edges increases the number
of non-mutable key-gates in the design, the rate of increase
is nol the same rate. Increasing Lhe weight [rom 1 Lo 2
incrcases the number of non-mutahle key-gates from 115 to
138. But increaging the weighi from 2 Lo 10, increases Lhe
number of non-mutable key-gates from 138 to 149,

4.5 Area overhead

A

B Random
45|{ @ Random + No Auns. =
Tl ® Unweighted
B Weighted

=

U wowm
Yo o2 on
| E B R

% overhead in area
=

=y g CBB0D CLASS Clu0x C2670 3540 CSALS (7552
Benchmark

Figure 10: Area overhead for different insertion algo-
rithms.

Figure 10 shows the area overhead for different key-gate
ohfuscation algorithms. Ewven though the mumber of keyv-
gates inserted is 5% of the number of gates in the origi-
nal design, the area overhead is high as the kev-gates are
XOR/XNOR gates that consists of a large number of tran-
gistors. Unweighted and weighted insertion techniques cntail
less overhead than randomn insertion techniques.

4.6 Power-delay product

pisTH

B Random
a0 B Random + No Runs
i Unwaighted 7
- B Waighied |
Rt =
ol =
L | B

AG = =

a0

Power-Delay product

% overhead in

i)

0

C432 459 CS80 01355 1M C367) C3s0 C3315 07552
Benchmark

Figure 11: Power delay product overhead for different
insertion algorithms.

Figurc 11 shows the powcer-delay product overhead for dif-
ferent inscrtions. Random inscrtion viclds an average over-
head of 25% while weighted and unweighted inscrtion yiclds
an average overhead ol 21%. To minimize Lhis overhead, one
can pursue a power and delay constrained obluscation.

4.7 Logic obfuscation with PUFs

Physical Unclonable Functions (PUFs) are circuits that
leverage process variations in IC manufacturing, to produce
secret keys, In [1], PUFs are used to give unique kevs for
each IC even though they are all obfuscated with the same
key. The design is first obfuscated with a key and a PUF
circuit is attached to it. Upon applying the user key (chal-

88

lenge) to the PUF, the PUF’s response will he the key used
for obfuscation. In the proposcd attack, the attacker is try-
ing Lo ligure oul. Lhis response i.e., the key used lor oblusca-
tion. On getting this response, the attacker can remove the
PUI ¢ircuil from the netlist and apply the correct keys di-
rectly to the original design. To break the influence of PUFs
ot any cryptographic algorithms, an attacker can determine
the wires that carry these signals and disconnect them,

3. RELATED WORK

Logic ebluscalion techniques can be broadly classilied inlo
two types—sequential and combinational. In scquential logic
obluscation, additional logic (black) stales are inlroduced in
the state transition graph [7]. The state transition graph is
madified in such a way thal Lhe design reaches a valid siate
only on applying a correct sequence of key bits. If the key is
withdrawn, the design, once again, ends up in a black state.
Tlowever, the effectiveness of these methods in producing a
wrong cutput has not been demonstrated. In combinational
logic obfuscation, as mentioned before, XOR/XNOR gates
are introduced to conceal the functionality of a design [1].

Obfuscation is also performed by inserting memory ele-
ments [8]. The circuit will function correctly only when these
clements are programmed correctly. However, using mom-
ory clements will incur significant performance overhead.

6. CONCLUSION

Logic obfuscation is wealk when the inserted key-gates are
isolated or their effect can be muted. If mutable gates are
emploved, then the attacker is able to determine the key
bits within a sccond. However, it can be strengthencd by
inscrting key-gates such that their effects are not mutable.
In such inscrtions when the key size is greater than 100, it
will take several years for an attacker to determine the kov
bits. Our analysis reveal that cven though a defender pes-
gimistically assumcs a smaller effective koy size, the actual
key gize encountered by the allacker is much higher.

IC testing techniques allow designers and testers to peck
inio the design, by conlrolling only the inpuls and observ-
ing the outputs. On one hand, an attacker can use such
capability to subwvert logic obfuscation. On the other hand,
a defender can perform better logic obfuscation by making
such process infeasible using the lessons learnt from testing.

7. ACKNOWLEDGEMENT

This material is based upon work funded by AFRL under
contract No. FA8750-11-2-0274. Any opinions, findings and
conclusions or recommendations cxpressed in this material
are those of the author(s) and do not necessarily refleet the
views of AFRL.

8. REFERENCES

[1] J. Roy, k. Koushanfar, and 1. Markov, “LPIC: Inding Piracy of
Integrated Circnits,” Proc. of Design, Automation and Test dn
Furope, pp. 1069 1071, 2008,

[2] “Defense Science Board (DEB} study oo High Performance
Microchip Supply,” hitp:/ /www.acq.osd.mil/
dab/reports /ADAA35663 . pal, 2005,

[3] T Karri, J. Rajendran, K. Rosenfcld, and M. Tchranipoor,
“Irustworthy ITardware: Identifying and Classifying Ilardwarc
Trojans,” TREFRE Computer, vol. 43, no. 10, pp. 39 46, 2010.

[4] SEMI, “Innovation is at risk ws semiconductor equipment and
materials industry loses up to $4 billion annually due to ID
infringement,” www.semiorg/en/Press /043773, 2008,

[5] M. L. Bushnell and V. D. Agrawal, “lisscutials of Llectronic
Testing for Digital, Memory, and Mixed-Signal VL3I Clircuits,”
Kluwer Academic Publishers, Boston, 2000.

[6] H. Lee and D. Ha, “An eflicient forward fault slinulation
algorithm based on the parallel pattern single fault
propagation,” Proc. of IEEE Internotionel Test Conference,
pp. 946 9335, 1991,

[7] T.. Chakraborty and 8. Bhunia, “TTARPOON: An
Obfuscation-Based So” Design Methodology for ITardware
Protection,” I8 Transactions on Computer-Aided Design,
vol. 28, no. 10, pp. 1493-1502, 2009,

[8] A. Baumgarten, A. Tvagi, and J. Zambreno, *Preventing 1C
Piracy Using Reconfigurable Logic Barriers,” IEEE Dusign and
Test of Computers, vol. 27, no. 1, pp. 66 75, 2010.

APPENDIX

(The intuition behind key interference based logic

obfuscation)

We will analyze the kev-interference graphs of a circuit ob-
fuscated uging random and weighted insertion methods both
from a defender and an attacker’s perspectives, As men-
tioned in Section 3, the defender always assumes that the
golden pattern, that mutes and sensitizes the effect of key-
gates simnltanconsly, docs not exist, and constructs his key
interforence graph accordingly. However, an attacker tries
to find the golden patterns to mute key-gates to decipher
the value of keys, and constructs his key interference graph
accordingly.

A. RANDOM INSERTION

HeCe®
I
COIONEN

a)

(
0
! \\l//
00 ?

Sequentially mutable

Dominant

)

Consecutively mutable Non-mutable

Figure 12: Koey-interforence graphs of €499, an TSCAS-85
Benchmark circuit, obluscated with 11 key-gales. Dolled lines
represent mutable edeges and solid lines represent non-mutable
edges. (a) Key-interference graph from a defender’s perspective
with an assnmption that the adge K11—-K3 is mutable. (b) Key-
interference graph from an attacker’s perspective. The golden
pattern to mute the edge K11 —K3 does not exist.

Defender’s perspective: I'igure 12 shows the key in-
terference graph of cne of the ISCAS-85 benchmark circuit,
C499, which is obfuscated by inserting 11 key-gates. Key-
gates K5, K8, and K9 are classified as dominant key-gates®.
Key-gates K3 and K11 are classified as consccutively muta-
ble key-gates. Key-gates K1, K2, K7, and K10 are classified
as scquentially mutable key-gates. Key-gates K4 and Ko
are classified as non-mutable key-gates. L'rom a defender’s
perspective, since there two non-mutable key-gates, the ef-
fective key size is two.

Attacker’s perspective: Consider the scenario where
an attacker tries to scarch for the golden pattern for the edge
K11—=K3 that simultancously mutes K11 and scnsitizes K3.
He concludes that such a pattern does not oxist. Thus, from
an attacker’s perspective, the edge from K11—K3 is non-
mutable as shown iu Figure 12(b). Ilence, the kev-gates K3
ancd K11 are classified as sequentially mutable key-gates. As
the largest key size on which brute foree is attempted is two,
the cffective key size is two. Notice that even though cleven
key-gates arc inscrted, the effective kov size is only two.

B. WEIGHTED INSERTION

3Pleasc refer Section 2 for the definitions of different types
of key-gates.

89

Sequentially mutable Nen-mutable

Figure 13: Key-inlerlerence graph ol C199 rom a delender’s
perspective with an assumption that the edges K1—K2, K1=K5,
K1—=K10, and K1—KI11 arc muiable. Dotled lines reprasent mi-
tuble edges and solid lines represent non-mutable edges. Effective
key size is 10,

Non-mutable

Figure 14: Rcalistic Key-interforence graph of C489 from an
attacker’s perspective, The golden patterns to mute the edges
Kl1—-K2, K1—-Kb, K1-KI10, and K1—+KI1l do not exist. Ilence,
K1 is non-mutable increasing the effective key size to 11.

Decfender’s perspective: As shown in Figure 12(a), the
edres K1—-K2, KI—-KH, KI—-KI10, and K1—-K11 are mu-
table. Hence, the key-gate K1 is classificd as a sequentially
mutable kov-gate and all the other gates are classificd as
non-mutable key-gates. From a defender’s perspoctive, since
there arc ten non-mutable key-gates, the offective key size is
Len.

Attacker’s perspective: The attacker searches for the
golden pattern that mutes the key-gate K1. As such a pat-
tern does not exist, he classifies the edges K1-K2, K1-5K5,
K1—=K10, and K1—-K11 as non-mutablec. Theretore, the
key-gate K1 also becomes non-mutable. As the attacker has
to try all combinations of the kevs, K1 to K11. the cffective
key sive is eleven. While the elleciive key sive in random
insertion is two, the proposed method has an effective key
size of cleven.

