
83

Security Analysis of Logic Obfuscation
Jeyavijayan l~ajendrant, Youngok 1-'inot, O"'gur Sinanoglu~, and ltamesh l<arrit

tPolyl.echnic Tnstil.ul.e or New York UniversiLy tAir Force Research Labs ~]New· York University-Abu Dhabi

ABSTRACT
Due to globalh:ation of Integrated Circuit (!C) design flmv,
rogue elements in the supply ch<:\in nm pirate ICs, overbuild
ICs. a.ml insert ha.rdware trojaus. EPIC [1] obfuscates the
design by randomly inserting additional gates; only a cor­
rect key makes the design to produce correct outputs. vVe
demonstrate that an attacker can decipher the obfuscated
net.list, in a time linear to the number of keys, by sensitizing
the key values to the output. \Ve then develop techniques to
fix this vulnerability and make obfiu:;ca.tion truly exponential
in the number of inserted keys.

Categories and Subject Descriptors
K.G.G [Management of Computing and Information
Systems]: [Security and Protection-Physical Security]

General Terms
Security

Keywords
IP protection, Logic obfuscation

1. INTRODUCTION

1.1 Motivation- Preventing IP Piracy
Globaliz:ation of Integrated Circuit (IC) desigu is mak­

ing IC/ Intellectual Property (IP) designers and users re­
evaluate their trust in hanhvare [2]. As the IC design flow
is distributed worldwide, hanhvare is prone to new kinds of
attackR Rnch as rcvcrRc engineering and IP piracy [1]. An
attacker, anywhere in this design fl.ow, can reverse engineer
the functionality of an IC/ IP. One can then Rteal and claim
ownership of the IP. An untrusted IC foundry may over­
build ICs aml sell them illegally. Finally, rogue clements
in l.he l'oundry may insert malicious circuits (hardware tro­
jans) into the design \Vithout the designer's knowledge [3].
Beca use of these altacks, the semiconductor induslry loses
$4 billion annually [4].

If a designer can hide Lhe functionali(,y of an IC while
it pas~e::; through the different, potentially untrustworthy
phases of the design flow, these attacks can be tlw.rarted [1].

1.2 Logic obfuscation
Logic obfuscation hides the functionality and the imple­

mentation or a design by inserling additional gates i nLo lhe
original design. In order for the design to exhibit its correct
runc:Lionality (i.e., produces correct outputs), a valid key has
to be supplied to the obfuscated design. The gates inserted
for obfuscation are the key-gates. Upon applying a wrong
key, the obfuscated design will exhibit a wrong functionality
(i.e., produce wrong outputs).

Consider the circuit shown in Figure 1 >vhich is obfus­
cated using key-gates Kl and K 2. The inputs I1 - J() arc
the functional inputs and Kl and K2 are the key inputs
connected to the key-gates. On applying the correct key

Pcnnission to make digital or hard copies or all or pan of this work for
personal or classroom usc is gramcd without kc prov idcd that copies arc
not made or distributed for proliL or commercial advantage and that copks
bear thi s noti ce and the full citation on the first page. To copy otherwise, to
r epublish, to post on servers or to redistribute to lists, r equires prior specific
permission and/or a fcc.
DAC 2012, .Tune 3-7. 2012, San Francisco, California, USA.
Copyright 20 12 ACM ACM 978- l-4503-1199- l/12/06 .. . $ 10.00.

values (Kl=O and K2=1) the design will produce a correct
output: otherwise, it. v.rill produce a wrong output.

K1 x,,
11

12
13

14
15
16 __ ___.

K2-------'

' _....,..x,
01

02

Figure 1: A circuit obfuscated using Lwo key-gaLes Kl and K2
ba.sed ou the technique proposed iu [1]. By <>pplying the input
pattern 100000, an attacker can sensitize key hits Kl and K2 to
the outputs 01 and 02, and observe their va1u•\'>.

EPIC [1] incorporates logic obfuscation into the lC design
flow, as shown in Pigure 2. Tn the untrusled design phases,
the lC is obfuscated and its functionality is not revealed.
Post-fabrication, the IP vendor activates the obfuscated de­
sign by applying the valid key. The keys are stored in a
tamper-evident memory inside t he design to prevent access
to an attacker, rendering thes key inputs unaccessible by an
attacker.

1.3 Attacks against logic obfuscation
The purpose of logic obiitscation is ddcated if an atta.cker

can determine the secret keys used for obfuscation. By de­
termining the keyR, one can decipher the functional netliRL
and make pirated copies and sell lhem illegally.

\Ve propose an attack where the attacker applies specific
inpul paLterns, observes the outputs ror these pattern, and
deciphers the secret key. To perform this attack, one needs
the obfuscated netlist and a. functional IC. An aLLacker can
obtain the obfuccated uetlist from (1) the IC design, or by
reverse engineering the (2) layout, (3) mask, or (-1) a manu­
factured IC as shown in Figure 2. The functional IC. (5) in
Figure 2, is bought in the open market.

The value of an unknmvn kev can be determined if it can
be sensitized 1 to an output witl.wut being masked/ corrupted
by the other key-bits and inputs. I3y observing the output,
the sensitized key bit can be determined, given that other
key-bits (similar to unknown X-sources2

) do not interfere
with the sensitized path.

Once an attacker determines an input pattern that prop­
agates t.hc key-hit value to an output without any interfer­
ence, it is applied to the functional IC i.e ., the IC ;vith the
correct. keys. Now, this paUern will propagate lhe correet
key value to an output. An attacker can observe this output
and resolve Lhe value of that key-biL.

Motivational example 1 (attack): Consider the key
input K1 in l•'igure 1. It will be sensitized to output 01 if
the value at the other input of gate G6 is 0 (non-controlling
value for an OH, gate). This can be achieved by setting 11=1.
I2=0 and 13=0. As the attacker has access to the functional
IC, one ca.n apply this pattern a.nd determine the value of
Kl on 01. For exa.rnple, if the va.lue of 01 is 0 for t ha.t input
pattern, then Kl = 0, otherwise Kl= 1.

1 Sensitization of an internal line I to an output 0 refers
to the condition (value;; applied from the primary iuputs to
justify the side input of gates on the path from l to 0 to the
non-controllable values of the gates) which bijectivcly maps
l to 0 and thus renders anv change on l observable on 0 .
2X-sourccs: Uninitializcd I~lCmory unitR. bus contentions or
multi-cycle paths arc the source ·of unknown response bitR ,
i.e ., unknown-Xs in testing. They arc non-controllable.

84

Trusted design regime
Untrusted design regime

IC Layout . . Packaging
Trusted desig

regime
Market

design generation Fabnca!lon

tl .t ~
ne1s ,CD~

', \

' Reverse
engineering

•
Figure 2: The top blue box repre~ent~ the EPIC de~ign flow [1]. The design is in the obfu~cated form in the untrusted de~ign regime.
In the untrusted regime, an attacker can obtain the obfuscated net list from (1) the IC design, or by reverse engineering the (2) layout,
(3) mask, or (4) a fabricated IC, and (5) the functional IC from the market. Using this attack, the attacker can get a deciphered netlist
and make pirated copies.

This problem is analogous to the fault sensitization prob­
lem in the presence of unknown-X values that can possible
block/mask the fault propagation [5]. The key-bits K1 and
K2 are equivalent to X-sources X1 and X2 in Figure 1.
Similarities and differences between fault detection
and key-propagation: Both objectives require an input
pattern that sensitizes the fault effect/key bit by
• blocking the effect of some or all of the X-sources/other

key bits, and preventing their interference.
• justifying the side input of all the gates on the sensitiza­

tion path to non-controlling values of the gates

The two problems differ slightly:
• fault detection also involves fault activation by justifying

the fault site to the fault value; key propagation requires
only sensitization

• fault detection aims at blocking/ avoiding unknown X's;
key propagation aims identifying unknowns one at a time
resulting in an iterative and dynamic process

·while an Automatic Test Pattern Generation tool [5] ca­
pable of handling X's during test generation can be readily
used by the attacker to identify the patterns that decipher
key bits, we take a closer look at various interference scenar­
ios for the key bits (unknown sources) with the ultimate goal
of building a strong defense, i.e., a smart logic obfuscation
technique.

1.4 Smart logic obfuscation
To prevent such attacks, key-sensitization has to be ham­

pered by inserting key-gates in such a way that propagation
of a key value will be possible only if certain conditions are
forced on other key inputs. As these key inputs arc not
accessible by the attacker, one cannot force the values nec­
essary to propagate the effect of a key. Thus, brute force
has to be employed.

11

K2 ----=---\

14
15

16

01

02

Figure 3: The attacker cannot propagate the effect of key bits
K1 and K2 individually to the outputs. Hence, the attacker has
to brute force to determine the values of K1 and K2.

Motivational example 2 (defense): Consider the
circuit shown in Figure 3 which is the same functional circuit
shown in Figure 1 but the two key-gates Kl and K2 are at
different locations. Here, if the attacker has to propagate
the effect of either of the keys, then one has to force a '0'
(non-controlling value of NOR gates) on the other input of
G4. In order to force this value, one has to control the key
inputs, which are inaccessible. Thus one cannot propagate
the effect of a key to an output, failing to determine the
values of the key.

Depending upon the location of key-gates, different tech­
niques have to employed to propagate the effect of a key. In

Section 2, we describe the different types of key-gates based
on their locations and also the strategies that an attacker
may follow to decipher the key bits. In section 3, we intro­
duce a graph notation to capture the interference between
key bits, enabling algorithmic development for smarter logic
obfuscation. Section 4 compares the obfuscation strength
and performance results between the random insertion and
the proposed logic obfuscation technique.

1.5 Contributions
The contributions of this paper are

• an attack on logic obfuscation based on IC testing con­
cepts

• strategies used by an attacker to decipher keys based on
their interference

• a logic obfuscation algorithm based on key-gates interfer­
ence graph

2. ATTACK STRATEGIES
A logic obfuscation technique can insert the key-gates any­

where in the circuit. Depending upon their location, the at­
tacker develops different strategies to determine the key bits.
In this section, we will classify key-gates based on their type
of interference with other key-gates and the corresponding
strategy used by the attacker.

2.1 Runs of key-gates
A set of key-gates connected in a back-to-back fashion

forms a run of key-gates.
Example 3: In Figure 4(a), the key-gates K1 and K2 form
a run as they are connected back-to-back.

~~~~~ 
(a) (b) 

Figure 4: (a) A run oftwo key-gates K1 and K2. (b) K3 replaces 
K1 and K2. 

Runs of key-gates reduce the effort of an attacker as they 
increase the valid key space. If N key-gates form a run, then 
the valid key space increases from the ideal, 1 valid key, to 
2!\-l valid keys. In the above example, 01 and 10 are valid 
keys, one of which suffices for the attacker. 
Attack strategy: An attacker can replace a run of key­
gates by a single key-gate, thereby reducing the number of 
key bits. Once the value of that key-gate is determined, one 
can find the entire valid key space. For example, in Figure 
4(b), the attacker replaces K1 and K2 with a key-gate K3. 
After the value of K3 is resolved a.<; 1, one determines that 
the valid key space is 01 and 10. 

2.2 Isolated key-gates 
If there is no path from a key-gate to all the other key­

gates and vice-versa, then such a gate is called an isolated 
key-gate. 

Example 4: Consider the gate K1 in Figure 1. As there 
is no path between K1 and K2, K1 and K2 are isolated gates. 
Attack strategy: An attacker prefers isolated key-gates as 
there is no interference with other key-gates. An attacker 



85

identifies a pattern that uniquely propagates the effect of an 
isolated key-gate's key to an output. One then applies the 
pattern to the functional IC and determines its value. 

As mentioned before, in Figure 1, the pattern lOOXXX 
propagales the value of"K1 to output 01. An aLlacker, upon 
observing this output, can identify that the value of Kl is 0. 

2.3 Dominating key-gates 
If chere are 01vo key-gates K1 and K2 such chaL K2 lies on 

every path between Kl and the output;;. then K2 is called a 
dominating key-gate. 
Example 5: The gate K2 in Figure 5 is a dominating key­
gate. 

FigUI·e 5: K2 is a dominating key-gate whose key bit value can 
be determined only after muting L.he eJfecL. of Kl. PaLL.en1s that 
make either C = 0 and A= ·l or C= O and R = "I will mu te the effect 
of K l. However, only if A = 1, the effect of K2 can reach 01. 

Attack strategy: An aHacker can deLermine che value 
of K2's key bit only if the effect of Kl 's key bit is prevented 
(muted) from reaching key-gate K2 while simultaneously 
sensitizing K2's key bit to an output. An input pattern 
that ccm perform muting as well a,s sensitization is ca,lled 
the golden pattern. On applying thi;; golden pattern. the 
attacker can determine the value of K2. If muting of Kl 
and propagation of K2 cannot be performed simultaneously, 
then the attacker cannot determine value of K2. In such 
Cll.<;cs. the golden pattern docs not exist, forcing an attacker 
to employ brute f<xce. 

The effect of a key can he muted before it reaches the 
other key, by using patterns that force controlling values in 
any of the ga.tes on the path between Kl and K2. If there 
are mulliple paths f'rom key-gaLes Kl and K2, then lhe efl€d. 
of key-input Kl has to be muted on every path. 

Example 6: Consider the circuit. show·n in Figure 5. K2 
can be determined only if the effect of Kl is muted. lf there 
is a paLLern that. jusunes the output or C5 to 1, lhen the 
effect of Kl will be muted. Pa.ttern~ tha,t make either C 
= 0, or A=l and I3 =1 \viii a.~sure this condition, thereby 
muting the effect of Kl. However, the atta.cker should ~elect 
the pattern that propagates the effect of K2 to an output. 
If C =0, G7 blocks the propa,gation of K2 as its output will 
always be n. The condition A = L allows K2 to propagate 
through GG. Hence, an attacker will select the pattern that 
m akes A = l a nd C = 0, so that one ca.n mute the effect of Kl 
as well as propagate the cffc-et. of K2 to an output. 

2.4 Convergent key-gates 
Even if' there are no paths between two key-gates, lhe 

sensitization paths might interfere. Such scenarios happen 
if" these t \1!0 or more key-gates converge. Depending upon 
the type of convergence, key-gates can be classified into 1) 
concurrently mutable, 2) sequentially mucable, and 3) non­
muta ble key-gate;; . 

2.4.1 Concurrently mutable convergent ke_v-gates 
If two key-gates Kl and K2 converge at some other gate, 

such that TO's key bit can be determined by muting K2, and 
K2 's key bit can he determined by muting Kl , t hen Kl and 
K2 are called concurrently nmtable key-gates. 

~~~~ 
~=i~01 ~~1

w (~
Figure 6 : (a) Concurrently mutable key-g ates: Kl and K 2 con­
verge <>t G5 and c;-..u b e muted . (b) Sequentially m utable key­
gate~ : Kl and K2 converge at G4, but only Kl can b e muted.

Example 7: Consider the circuit shown in Figure G(a).
The key-gates Kl and K2 converge at the gate G5. The
value or Kl can be determined by applying a pallern that
mutes K2 (B= O). Similarly, the value of K2 can be deter­
mined by applying a. patlern GhaJ.. mutes K1 (A=l).
Attack strategy: The a,ttacker determines the golden pat­
tern that mutes one key and simultaneously sensitizes the
other key to <:m output, or vice-versa.. If a. golden pa,ttern
does not exist, then the attacker has to p erform brute force
only on that set of concurrently muta.hle key-ga.tes.

2.4.2 Sequentially mutable convergent key-gates
If two gates Kl and K2 converge at some other g·atc, such

that K2's key bit can be determined by muting Kl 's key
while K2's key cannot he muted to determine Kl'H key, then
Kl and K2 arc called sequentially nmtahlc convergent key­
gateR, aR they can be deciphered only in a. particula.r order.

Example 8: Consider the circuit shown in Figure G(b).
The value of K2 ca.n be determined by a.pplying a. pa.ttcrn
that mutes Kl (A= l), while K2 cannot be muted as it di­
reccly feeds the gale where 1<1 and K2 converge.
Attack strategy: An all.a.cker will rirst dete rmine K2's
value by muting Kl using the golden pattern. One then
updates t.he net.lisl. by replacing K1 wil.h a buller or an in­
verter based on the value of K2. Then Kl is ta rgeted. If
the golden pattern does uot exist, then the attacker ha;; to
perform brute force ouly on that set of ~equentially muta.ble
key-gates.

2.4.3 Non-mutable convergent key-gates
If two key-gates Kl and K2 converge at some other gate,

such t hat neither of the key bits can be muted, then Kl and
K2 arc called non-mutable convergent key-gates.
Example 9: Consider the circuit sho;vn in Figure 3. The
key-gates Kl and K2 arc connected to the same gate G4.
Attack strategy: To propaga.le either of the key bits the
other one has to be muted. However, as an attacker cannot
access key inputs, one cannot. f'orce those va lues. Hence, one
is forced to perform brute force attacks.

Input : Obfn~cated netlist, Functional IC, Key Inputs
Output: Original nctli st
Determine Run.> of Keys;
Replace them ,,-ith XOR gates:
Update Netlist;
for tlu: rr~ma:ining k~ys do

For each T.wlated J(ey do

I
Compnte and apply propagation pattern;
Detcrrninc f(eyRi.t.s ami upcla.t.c Nct list.;

end
For each Consec ut ive]] Concur-r-ent jj Sequcntial /,,ey do

if the.Te. exists a golden patte.nt then

I
Apply the golden pat.tcm;
Determine KeyiJit.s , Cpdate Netlist., Break:

else
I App lyBruLeForce(), Break:

end
end
For each 1Von-nwlable Key do
I ApplyBmtcFmcc(), Break;

end
end

ApplyBruteForce();
For each possible key combination do

Generate random input p<'lt tent8;
Simulate the patterns a.nd obtain the outputs OF",.,,._ :
Apply the pa t Lerns on IC and obtain the ouLpnts OPeu;
if O~,;m==01-'en then

I
\~alid Key "': c urrenL key combinaLion;
1,; pdatc ueth8t;

end
end

Algorithm 1: Attack on logic obfuscation.

2.5 An attacker's action plan
By considering all the different types of interference be­

tween key-gat es, an a ttacker uses Algorithm 1 to determine

86

the secret key. The attacker first removes the runs of key­
gates and targets the isolated key-gates. Each isolated gate
can be removed by one test patterns. After that, one targets
consecutively mutable, concurrently nmtable, and sequen­
tially muLable key-gates. Only if" one is able t.o generate
a golden pattern that simultaneously mutes effects of the
other keys and sensiU~es the efl"ecl or the tarp;et key, the
value of the target key can be determined. Finally. the non­
mutable ke.ys are identined via brute force. As the key bits
are identified gradually in every iteration. the cone:-;pondiug
key-gates can be replaced by a buffer or an inverter, possi­
bly changing the type of other key-gates. Tlm:-;, in every
iteration, the key-gate types need to be re-computed.

3. STRONG LOGIC OBFUSCATION
Strong logic obfuscation hinges on inserting key-gates with

complex interferences among thern. Next, we relate types of
key-gates to the kind of interference they introduce using a
graph-based notation.

3.1

~~

~~
(e)

02

Figure 7: (a) An example circuit with three key-gates. (b) Inter­
terence graph of the key-gates. Non-mutable keys arc connected
by ~olid edge~. (c) If the new key-gate is inserted at the out­
put G "10, it creates rnutn.blc edges (dotted lines) with the other
key-gates (d) If the new key-gate is inserted at. the o11tpnt G5, it
creates non-mutable edges (solid lines) with t he other key-gates.

To insert key-gates, 'We form an interference graph of key­
g·ates. In this graph, each node represents a key-gate and
an edge connect;.; t;vo nodes, if two gn.tCB interfere. l;.;olatcd
key-gates arc represented with isolated nodes. A run of key­
gates is denoted by a single node . Non-mutable key-gates arc
represented arc connected with non-nmta.ble edges. eoncur­
rcntly mutable key-gates arc conncetcd with rnutablc edges.
Sequentially mutable key gales are connected by two edges;
a non-mutable edge arises !"rom the key-gate that is non­
mutable and a mutable edges arises from the key-gate that
is mutable.

Example 10: Consider the cireuit with three key-gates
:-;hmvn in 7(a). They interfere >vith each other a:-; follows

• Kl ami K2 are non-mutable and :-;o they are connected by
non-mutable edges as shown in Figure 7 (b).

• The key-gate:-; Kl a.ml K3 converge at the ga.te G6, hence
they are eonverging key-gates. Specifically, they are se­
quentially convergent; K3 's effect cannot be muted while
Kl 's effect can be rnut.ed by applying 15=0. However if
Ir• is 0, then both key bits arc blocked 11.t G8. Hence, Kl
and K:3 arc non-nmtable and so they arc connected by
non-mutable edges a.s shown in Figure 7(b).

• K2 and K3 eonvcrgc at the gate G9, through G3 and
G7, respectively. However, neither of the key hits can be
muted and sensitized individually. K>r instance, making
IG= L mutes K2 but also blocks the sensitization of K3 at
GlO. \'laking 17= 1, mules K:3 but. also blocks the sensiti­
zation of K2 at G 10. Hence , K2 and K :3 arc non-mutable
as shown in Figure 7(b).

For a strong·cr logic obfuscation, the nmnbcr of non-mutable
edges in the interference graph should be maximized, as
they foree an attacker to perform brute force. On the other
hand, if there arc more mutable edges, then the attacker
can mute the efl"ecl of" keys and can easily determine lheir
values. Hence, a defender prefers non-mutable edges to mu­
lable edges.

Example 11: Consider the circuit shown in Fig 7(a). If
a ne\v key-gale, 1<4. is i nserled at the output of C 10, then
it creates mutable edges with all the other key-gates. By
setting 16= 1 or 17= 1. the attaeker can mute the effects of
Kl. K2, ami K3. a.nd can decipher easily. lienee, G 10 i:-;
connected with mutable edges with the other key-gates as
shown in Figure 7 (c).

If the new kcy-ga.tc, K4, is inserted at the output of G5,
then it creates non-mutable edges with the other key-g·ates
a.s shown in Figure 7(d). Thus, it is better to insert the nc>v
kcy-gatcR at the output of G~ ..

Input : Original nct.list, KeySiv.e
Output: Obfuscated net.list
KcyGateLocations = {}:
Hamlomly insert 10'1.. key-gates;
Add that location to KevGateLocations:
Const.mcl. KeyGraph; ., ·
for i .__ 2 to J(eySize do

For each Ga{ei in]llellisl do
if Gatei rf. Kc:yGateLowtiuns then

Cum. Weight = 2::: weight of edge~ in KeyGraph:
For each K ~y-gtJ.I.ek in KeyGo.l.eLom{ions do

I
c.:n~L Wei~.hti += FincLvietric(Gate.i.
I<..e}-gatek)·

end
end

end
Select the Gate with the highest Hardness Metric;
Add the selected gate to KeyCateLocations;
Insert a key-gate at the ouLp ut of L.he selected gate;
Update KeyGraph:

end

FindMetric (1(1, K2);
if K1 and K 2 are isolaled then Return 0;
if K1 and K2 are con8ecutiveliconcurrentllsequ.entio.l then

I

if a golden pattern exists then
Return weight of mutable edge;
else Return weight of non-mutable edge;

end
if Kl arH.l K2 arc non-mutable then
Return weight of non-mutable edge:

Algorithm 2: Insertion of key-gates

3.2 Insertion of key-gates
A defender can use the interference graph to insert key­

gates. Algorithm 2 is used to insert key-gate:>. At every
iteration, a key-gate is inserted at a location such that the
nmnber of non-mutable edges in the graph is maximized.

Initially, 10% of the total key-gates arc inserted at ra.n­
dorn locations in the circuit. Such random distribution will
insert key-gates in diff(•rcnt parts of the circuit thereby af­
fecting multiple outputs. Here, we considered 10% for initial
distribution (one also ean chose a different amount of initial
distribution and the impact of this amount on obfuscation
is beyond the scope of this paper). Then the graph of key­
gates is constructed. Then, the rcrnaining key-gates arc in­
troduced iteratively. In every iteration, for each gate in the
neLlisl, we clelermine the type or edge wilh the previously in­
serted key-gate. Depending upon the type of edge, we assign
weights; non-mutable edges are given a higher weight than
the mutable edges. \Ve then ealculate the sum of weights of
edges in the g raph for that gate. The gaLe that rnaximi~es
the ~mn of weight of edge~ in the graph i:-; selected, and a
key-ga.te is inserted at its output. The graph is then updated
by including the !le'..v key-gate. Thi~ procedure is repeated
for inserting all the key-gates .

In every iteration, the defender has to check for the pres­
cnec of golden patterns \vhich might increase the computa-

87

180

160

140

120

"' ;>.

~ 100

0 .. 80

60

40

20

tiona! complexity of the algorithm. Hence, a defender can
assume that there always exists a golden pattern and skip
the search for the golden pattern. This is a pessimistic sce­
nario for a defender because some golden patterns might not
exist.

4. RESULTS

4.1 Experimental Setup
The proposed technique is analyzed using ISCAS-85 com­

binational benchmarks. YVe used the Atalanta testing tool
[6] to determine the input patterns for muting and prop­
agation the effects of keys. To obfuscate a circuit \Vith a
reasonable performance overhead, we selected the key size
aB 5% of number of ga.tcR in that circuit. I:Vhilc obhtscat­
ing a circuit, we assumed that there ahva.ys exists a golden
pattern. \Vhilc attacking the circuit, we used the techniques
proposed in Section 2 where we search t(x the presence of a
golden pattern. For every brute force attempt, we applied
1000 random pa.Lterns Lo deLermine the value of a. key. The
area, pO\ver, and delay overheads were obtained using lhe
Cadence HTL compiler.

\Ve compared Lhe ell"ecl-iveness or k>ur types of insertions:
random-insertion [1], random insertion with no runs of gates,
unweighted insertion \Vhere both mutable and non-mutable
edges are given the ~arne 'veight of 1, and weighted insertion
where non-mutable edges are given a higher weight (weight
= 2) than the mutable edges (\veight = 1).

Random Random + No Runs Unweighted We~hted

Figure 8: Types of key-gates inserted by different logic
obfuscation techniques. Effective key size from an at­
tacker 's perspective (top) and from a defender's pet·spec­
tive (bottom) are shown as numbers on top the bars.

4.2 Types of keys and effective key-size
Figure 8 shovvs Lhe number or types of" keys in different.

benchmarks for different types of insertions. ln the r andom
insertion method, rnosL of the keys are concurrently muta­
ble. Some number of keys are inserted in runs benefiting
the a.LLacker. Only :30% of keys are non-mutable and se­
quentiaJly mutable which require brute force approach. In
the 'Random + No fl.uns' method, keys are not inserted in
runs thereby increasing the effort of the <tttacker.

In the unweighted and weighted insertions, around 90%
of keys are of non-rrmt<tble and ~equentially mut<tble types.
rviost of the keys in weighted insertion is either non-mutable
or scqucntiaJly mutable because they arc given a higher
weight. There arc no isolated keys in either of the inser­
tion t echniques, a.~ they arc not given any weight;.;.

Effective key size: Due to random insertion of the first
10% of key-gates, multiple disconnected graphs might cx­
isL wiLhi n a key-i nle rf"erence graph. The keys in a. graph
can be either isolated, dominant , or convergent. Since a de-

fender pessimistically assumes that the golden patterns al­
ways exist, the effective key size from his perspective is the
maximum number of non-mutable keys in a connected key­
interference graph. If there arc N non-mutable key gates
(effective key-si~e), Lhe number of brute f"orce attempts is
2:-l-t. However, when an attacker tries to attack, not all
lhe golden patterns will exisl. For those keys , he has Lo
try for all possible combinations. Hence, from an attacker's
perspec:Live, Lhe e!Ted i ve key size is Lhe largest key si~e on
which brute force is attempted. If the number of brute force
attempts is 2M , then the effective key si~e for an attacker is
I'd.

In Figure 8, the effective key-sizes for a defender and an
attacker are shown as numbers on top of the bars. For both
the attacker and defender, the effective key sizes of random
insertions are less than that of the unweighted and weighted
insertions. Therefore, the nmnher of brute force attempts
required to decipher the kcyR inserted using random inRcr­
tions is exponentially smaller than that of the unweighted
and weighted insertions. The nt. ta.ckcr's effective key size iR
always greater than that of the defender's because of the ab­
sence of golden patterns which forces the attacker to perforrn
bruLe force. For example, consider Lhe benchmark C7552,
the attacker needs 2140 brute force attempts and hence the
eiTecLive ke_y si~e is 146. On Lhe other hand. for a defender.
lhe largest number of non-rnula.ble key-gates in a. connected
graph is 51 and hence the effective key size is 51.

4.3 Number of test patterns
1045 ,_---,

10"

g? 1030
Q;
~ 1025
~

; 1 o2o

0 10'5

""

R9ndom (Defender's! =
Random Attacker"s =

Weighted 18efender"s =
We1ghtecf (Attacker"s =

C432 C499 CBBO C1355 C1908 C2670 C3540 C5315 C7552

1040

1030 :-§:
(I)

E
1020 i=

1000 years

4\Jl~~ys

Figure 9: Number of test patterns required by the at­
tacker to determine the keys inserted using randon1 and
weighted insm·tion fron1 an attacker and a defender's per­
spectives. The time scales are drawn assuming that one
billion input patterns can be applied per second.

Figure 9 shows the number of test patterns required to
decipher the key from a defender and an attacker's perspec­
tives for the ra.ndom and weighted insertion method. The
time scales arc calculated assuming that an attacker can
apply a billion patterns per second. On one hand, from a
defender's perspective, the number of test patterns arc cal­
culated a~suming that golden patterns exist. On other hand,
from an attacker's perspective, the number of test patterns
are more realistic: as chey are determined using the a.l.Lack
methodology proposed in Section 2. It can be seen that the
defender's perspective on timescale is several orders or mag­
nitude smaller than the realistic scenario. For example, in
C7552 circuit, a defender thinks that iL will Lake 46 days to
decipher the netlist while the attacker will take more than
a thousand ;-,rears. However, from both attacker 's and de­
fender '~ perspectives . a few thousartd t est patterns are ~uffi­
cient to figure out the keys when they are inserted randomly.
On the other hand, when the weighted key insertion method
is used, the number of test patterns required to recover the
keys increases by severa l orders of magnitude. For example,
in c<l.~e of C7552 to about 1018 which will take several years
t o figure out the key bits.

4.4 Effect of the weight of a non-mutable edge

88

I3y incrc<J.~ing the weight of the norHrmtablc edges, the
algorithm will create a design that h;m a large number of
non-mutable key-gates. Table 1 shows the number of non­
mutable key-gates flx different weights of non-nmt.able edges
in one of the ISCAS-85 benchmark circuit. C7352. This
circuit wa.~ obfu~cat.ed with 17(i key-gates. \Vhilc incre&<>ing
the weight. of' th€ non-muLa.ble edges increases the number
of non-mutable key-gates in the design, the rate of increase
is nol Lhe same rale. I ncr€asing t.lw weighL from 1 Lo 2
increases the number of non-mutable key-gates frorn 115 to
138. Hut increasing the w€ight from 2 to 10, increases Lhe
number of non-mutable key-gate;; from 138 to 1'19.

4.5 Area overhead

Hench mark

Figure 10: Area overhead for different insertion algo­
rithms.

Figure 10 ;;hows the area overhead for different key-gate
obfuscation algorithms. Ev€11 though th€ number of key­
gates inserted is 5% of the nmnber of gates in the origi­
nal design, the area overhead is high as the key-gates are
XOR/XKOR gates that consists of a large number of tran­
sistors. Unwcighted and weighted insertion techniques entail
less overhead than random insertion techniques.

4.6 Power-delay product

Figure 11: Power delay product overhead for different
insertion algorithms.

Figure 11 shows the power-delay product overhead for clif~
fcrent insertions . Randmn insertion yields an averFLge over­
head of 25% while weighted and unwcightcd insertion yields
an average overhead or 21%. To minirni"'e this overhead, one
can pursu€ a. pow€r and delay constrained obfusca tion.

4.7 Logic obfuscation with PUFs
Physical L~nclonable Functions (PUFs) are circuits that

leverage process variation~ in IC rmmufa.cturing, to produce
::;ecret keys. Iu [1], PUF::; are u sed to give unique key::; for
each IC even though they are all obfuscated with t he same
key. The design is first obfuscated with a key and a PUF
circuit is attached to it. ~Cpon applying the user key (clml-

lcngc) to the PUF, the PUF's response will be the key used
for obfuscation. In the proposed attack, the attacker is try­
ing Lo rigure ouL Lhis response i.e., the k€y used for obfusca­
tion. On getting this response, the attacker can remove the
PCI' cireuit from the netlisl. and apply the correct keys di­
rectly to the original design. To break the influence of P"CFs
or any cryptographic algorithms, an attacker can determine
the wires that carry these signals and disconnect them.

5. RELATED WORK
Logic obfuscation techniques can be broadly classified inl.o

two types-sequential and combinational. In sequential logic
obfuscation, a.ddilional logic (black) sLates are introduced in
the state transition graph [7]. Th€ state transition graph is
modified in such a way Lhal Lhe design reaches a. valid staGe
only on applying a correct ::;equence of key bits. If the key is
withdrawn. the design, once again, €nels up in a black state.
However, the effectivene;;s of these method::; in producing a
wrong output has not been demonstrated. In combinational
logic obfuscation, as mentioned b efore, XOR/XKOR gates
arc introduced to conceal the functionality of a design [1].

0 bfuscation is also performed by inserting memory ele­
ments [8]. The circuit will function correctly only when these
clements arc programmed correctly. However, using m em­
ory clements will incur significant performance overhead.

6. CONCLUSION
Logic obfuscation is vveak when the inserted key-gates are

isolated or their effect can be muted. If mutable gates are
employed. then the attacker is able to determine the key
bits \Vithin a second. However, it can be strengthened by
inserting key-gates such that their effects arc not mutable.
In such insertions when the key size is greater than 100, it
will take several years for an attacker to determine the key
hits. Our analysis reveill that even though a ddcnder pes­
simistically assumes a smaller effective key size, the actual
key size encounlered by Lhe a.llacker is much higher.

IC testing techniques allow designers and testers to peck
inl.o Lhe design, by conlrolling only Lhe inputs a.nd observ­
ing the outputs. On one hand, <til <tttacker c<tn use such
capability to subvert logic obfuscation. On the other hand,
<t defender cau perform better logic obfuscatiou by m<tking
such process infeasible using the lessons learnt from t€sting.

7. ACKNOWLEDGEMENT
This material is ba-;ed upon work funded by AFRL under

contract I\o. FA87G0-11-2-0274. Any opinions, findings and
conclusions or recommendations expressed in this material
arc those of the anthor(s) and do not necessarily reflect the
views of AFRL.

8. REFERENCES
[11 J . Roy, F . K o ushanf,.r, and I. Markov, "EPIC: Ending Piracy of

Integrated Circuit~:~." Proc . of Des-ign. Au-tornation (tnd Te~d ·in
Bnrope, pp. I 069 I 07~L 2 008.

[2] "Defeu>e Sci<erKe Board (DSB} Htudy on High Performance
Micruchip Supply,'' http:/ /www.acq.oHd.mil/
dsb/ reporls/ ADA435563 . pdf, 2005.

[:31 R. Karri, J. Rajcndran, K. Rosenfeld, and I\L Tchranipoor,
'"11-us t.worthy Hardware: Identifying and Classifying H ardware
'T'rojans," TF;FJF: Cmnpuitr·, vol. ·1:3, no. 10, pp. :)l) c[() , 20HJ.

[4] SEl\-11: ~: Innovation i::; at ri:;k a:; ::;ernicouductor equiprueut a ud
rna ter.iab iudu:;try lo;;eb up to $4 bilJiou auuually due to IP
infrinJ-!;ernent: :~ '\VWW .~erui.orJ-!;/ en/P r e.ss / P04377 5 , 2 008.

[51 M. L Dushncll and V. D . AgrawuL ''Essentials of Bkct.ronic
Tcst.ing for Digital, Memory, and l'vlixed-Signul VLSI Circuits,"
Kluwcr Academic Publishers, Boston, 2000.

[6] H. L.,., a.ud D. Ha , "An effki<ent forward fau lt Himulat ion
alJ-!;urithrn ba.:;ed on the parallel pat tern Hiugle fault
propaga tion," P.ruc . u.f IEEE InktwJ.ti.una./ Test Con.fer ~nce,
pp. 1)46 955 , 11)9 1.

[71 R . C hakraborty a nd S. Dhunia, "HARPOON: A n
O bfuscat ion-D;sed SoC Design~ Methodology for Hardware
Protection,'' [V,'JD.oJ 1'ransactions on Computcr· A ,dcd Design,
vaL 28 , no. 10 , pp. 149:3-1502, 2009.

[8] A .. . Bauruga.rten , A .. . T ya g: i: and .J . Zarubr euu. :~Prevt.":ntinJ-!; IC
P ira.cy U.sing: R.ecoufig:ur (.l.ble Lo~ic B~-trrier~,' ~ IEEE Dt:.':iiyn u.nd
Te.st of Cmnp~ukt s. vol. 2?, no . 1, pp. G6 ?5, 2010.

89

APPENDIX
(The intuition behind key interference based logic
obfuscation)
\Vc will analvzc the kcv-intcrfcrcncc graphs of a circuit ob­
fu~cated usir~g random -~.ml weighted insertion methods both
from a defen(ler and an attad<:er's perspectives. As men­
tioned in Section 3. the defender always assumes that the
gulden pattern, that mutes and sensiti;es the effect of key­
gates simultaneously, docs not exist, and constructs his key
interference grnph accordingly. However, an nttackcr tries
to find the golden patterns to mute key-gates to decipher
the va.lue of keys, and constructs his key iuterference graph
accordingly.

A. RANDOM INSERTION

0G0G A \,I//

v K4

(a)

(b) - Dominant Sequentially mutab<> - Consecutively mutable -
Non-mutable

FigUI'e 12: Key-interference graphs of C4!HJ . an TSC :\S-85
benchmark circuit., obfuscated wit.h 11 key-ga Les. DoLled hnes
represent mutable· edges and solid lines represent non-nmtable
edges. (a) Key-interference graph from a defender's perspective
with an assttmpt ion that. the edge K11---+K:3 is mutable_ (h) Key­
interference graph from an attacker's perspective. The golden
pat tern to mute the edge Kll ---+ K:1 does not exist.

Defender's perspective: Figure 12 s hows che key in­
terference graph of one of the lSCAS-85 benchmark circuit,
C499, whic~t is obfu.scated by ~~~serting 11_ key-gates . Ke~;­
g·ates K5, K8, and K9 are class1fied as dormnant key-gates .
Key-gates K;~ and Kll arc classified a.~ consecutively nmta­
blc key-gates. Key-gates KL K2, K7, and KlO arc classified
as sequentially mutable key-gates. Key-gates K4 and KG
are classified as non-mutable key-gates. l•'rom a defender's
perspective, since there two non-mutable key-gates , the ef­
fective key size is two.

Attacker's perspective: Consider the scenario \vhere
an attacker tries to search for the golden pattern for the cdg·c
Kll--4K;) that sinmltanconsly mutes Kll and sensitizes K:3.
He concludes that RlH'h a pattern docs not exist. ThuR, from
an attacker 's perspective, the edge from Kll--4 K3 is non­
mutable as shown in Figure 12(b). Hence, the key-gates K3
and Kll are classified as sequentially mutable key-gates. As
the largest key size on which brute force is attempted is two,
the effective kev size is two. I\otice that even though eleven
key-ga tes arc i~scrtcd, the effective key size is only tvvo.

B. WEIGHTED INSERTION

:;Please refer Section 2 for the definitions of different types
of key-gat es.

Sequentially mutable -
Non-mutable

Figure 13: Key-interference graph of C--Wn from a dcicnder's
perspective with an assumption that the edges Kl---+K2, Kl-+K5,
Kl---+KlO. and Kl---+Kll arc nwtablc. DoLLed lines rcpre~enL mu­
table edg~ and solid lines represent non-mutable edges. Effective
key ~ize is 10.

- Non-mutable

Figure 14: Realistic Key-interference graph of C4UU frow an
a ttacker's perspective. The golden patterns to mute the edges
Kl--tK2. Kl ---+K5 . Kl ---+KlO. and Kl---+Kll do not. exist. lienee,
K'l is n<)n-mutablc increasing the effective key si 7.C to 11.

Defender's perspective: As shown in Figure 12(a), the
edges Kl--4K2. Kl--4K5, Kl--4Kl0, and Kl--4Kll are mu­
table. Hence. the key-gate Kl is classified as a sequentially
mutable key-gate and all the other gates arc classified as
non-mutable key-gates. From a defender's perspective, since
there arc ten non-mutable key-gates, the effective key size is
len.

Attacker's perspective: The attacker searche~ for the
golden pattern that mutes the key-gate Kl. As such a pat­
tern docs not exist. he classifies the edges K 1--+ K2, K 1--+ K5,
Kl--4Kl0. Ftnd Kl--4Kll FIR non-mut~blc. Therefore, the
key-gate Kl 11.lso becomes non-mutnblc. AR the attacker has
to trv all combinations of the kevs, Kl to Kll , the effective
kev si~e is eleven. \Vhile the efreccive key si~e in random
in~ertion is two, the proposed method has an effective key
size of eleven.

